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In this work a two-dimensional laminar flow past a square cylinder is considered.
Actuators placed on the cylinder enable active control by blowing and suction.
Proportional feedback control is then applied using velocity measurements taken
in the cylinder wake. Projection onto an empirical subspace is combined with a
calibration technique to build a low-order model of the incompressible Navier–Stokes
equations. This model is used within an optimization method to determine a set of
feedback gains which reduces the unsteadiness of the wake at Re = 150. The resulting
controlled flows are further characterized by computing the critical Reynolds numbers
for the onset of the vortex shedding instability.

1. Introduction
Low-order models make it possible to devise or to optimize controls for large-scale

problems that would not otherwise be solvable in terms of computational size. Several
such models have been successfully applied to control the wake of a circular cylinder
(see, for instance, Gillies 1998; Bergmann, Cordier & Brancher 2005). In this work we
investigate the possibility of applying these approaches to an actuator-based feedback
control. Suboptimal controls of this kind, leading to drag reduction, have previously
been devised experimentally, or using full-order models. We refer to the review paper
by Choi, Jeon & Kim (2008) for examples. From a low-order modelling point of
view, this problem is challenging since in general this type of model is not robust with
respect to variations of the actuator control laws. This is particularly true when, like
in realistic cases, the actuators and sensors are small compared to the scales of the
flow.

A reduced order model (ROM) can be obtained by performing a projection of
the equations of interest onto a low-dimensional subspace. In the following, this
subspace is constructed empirically using velocity field data combined with the proper
orthogonal decomposition (POD) technique. POD was originally introduced for the
study of coherent structures (Lumley 1967) and has since been widely used in
reduced-order modelling (Holmes, Lumley & Berkooz 1996). Galerkin projection of
the incompressible Navier–Stokes equations onto the POD subspace leads to a model
that is often incapable of correctly reproducing the data that was used to build
it. Calibration techniques can however be used to identify the coefficients of the

† Email address for correspondence: angelo.iollo@math.u-bordeaux1.fr



406 J. Weller, S. Camarri and A. Iollo

reduced-order model such that its predictions are as close as possible to the full-
order solution (Galletti et al. 2004). Here, we use the calibration method developed
in Weller, Lombardi & Iollo (2009) for building an accurate model of an actuated
flow which is fitted simultaneously to the dynamics resulting from applying a set of
reference control laws. This model also gives good approximations when integrated
with control laws that do not belong to the reference set, within a given trust-region.

In this paper we present a classical gradient based algorithm where the Navier–
Stokes equations are replaced by the low-order system. The low-order system is
updated within the optimization process by adapting the modelling techniques
presented in Weller et al. (2009). As an example, we consider the flow past a confined
square cylinder as a prototype of wake flows past bluff bodies with separation
points imposed by the geometry. The control objective is to reduce the unsteadiness
induced by vortex shedding. The actuation is provided by two synchronized jets
driven in opposite phase, and velocity sensors are placed in the near wake. Similar
configurations were studied in both experimental and numerical set-up for the case of
a circular cylinder. Roussopoulos (1993) showed experimentally that for a Reynolds
number 20 % over the critical limit for the onset of the two-dimensional vortex
shedding (defined here Recr ), the feedback of a velocity sensor could stabilize the flow
using acoustic actuators on the channel sides. The feedback gain and the location
of the sensor were both found empirically. In the numerical set-up of Park, Ladd
& Hendricks (1994) the actuation is placed on the cylinder surface and the velocity
sensor is also in the wake. By choosing the appropriate actuator gain and sensor
placement it was possible to stabilize the flow for a Reynolds number of the same
order as the one considered by Roussopoulos (1993).

The idea of approximating a computationally expensive problem by a low-order
model to make large scale optimization problems feasible, sometimes referred to as
surrogate-based optimization (Robinson et al. 2008), is applied in a variety of ways
in the literature, each approach having relative advantages and disadvantages with
respect to the one presented here. In Gerhard et al. (2003) a distributed actuator
(a volume force) and a localized sensor were used to devise a feedback control to
stabilize the vortex shedding past a circular cylinder at a Reynolds number twice
Recr . An observer was employed to estimate the state of the flow and the control
law was inferred using the POD model. The feedback control resulted in reduction
of the flow unsteadiness. The same configuration was studied more recently in King
et al. (2008) where a pre-computed control law was updated in real time as a function
of the estimated state of the system (model predictive control). This approach was
more effective (a less unsteady flow) than the one developed in Gerhard et al. (2003),
based more on physical insight. Samimy et al. (2007) implemented a feedback control
derived by a classical linear-quadratic approach to stabilize an experimental cavity
flow. The linearized POD model was obtained by particle image velocimetry data
relative to forced and unforced experiments. Combining these data, different reduced
models were obtained. A significant reduction of the resonant tone was reported in
some cases, depending on the POD model employed. Other approaches are those
based on vortex models as done for a circular cylinder at a Reynolds number 50 %
above Recr in Protas (2004). The control and the observer were built starting from a
point vortex model and actuation was performed by cylinder rotation leading to an
effective reduction of the wake oscillation was obtained. In Pastoor et al. (2008) an
experimental feedback shear layer control for bluff body drag reduction was proposed.
The two jets actuating the flow were driven by a controller designed using a vortex
method, and the control resulted in drag reduction.
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Figure 1. Flow configuration and computational domain.

In this work we focus on a strategy for wake stabilization that employs localized
actuators and sensors in order to be as realistic as possible. The state of the flow
is not estimated, and hence we need not design an observer. The gain coefficients
between the sensors and the actuators are the parameters to be optimized using a
nonlinear low-order model. In the spirit of what was done experimentally in Samimy
et al. (2007), the low-order model incorporates in a systematic way the dynamics of
the controlled flows that are obtained during the optimization process. The overall
approach can be extended in principle to more complex three-dimensional flows. The
Reynolds number considered is close to the limit for the onset of three-dimensional
wake instabilities and is more than twice Recr . In addition, the separation points
are fixed by the geometry independently of the actuation. This case represents a
challenging configuration to apply the proposed low-order model based optimization
method.

2. A reduced-order model for actuated flow
2.1. Flow and control set-up

We consider a two-dimensional laminar flow past a confined square cylinder. A sketch
showing the geometry, the frame of reference and the adopted notation is plotted in
figure 1.

The incoming flow is assumed to have a Poiseuille profile, while non-reflecting
characteristic based boundary conditions are imposed at the outlet. No-slip conditions
are enforced both on the cylinder and on the parallel walls. With reference to figure 1,
L/H =1/8, Lin/L = 12, Lout/L = 20. Details concerning the grids and the numerical
set-up are reported in Buffoni et al. (2006). In the following the Reynolds number is
defined with respect to the cylinder side and the maximum value of the inlet velocity
profile.

In this flow configuration the computational domain is well defined and the
boundary conditions are simple and easily reproduced in an eventual experiment.
A Von Kármán vortex street develops past the cylinder when the Reynolds number
increases above Recr =59 as a result of a global instability (Camarri & Giannetti
2007). The Reynolds number we considered in this work is Re = 150. The resulting
flow is two-dimensional and it is characterized by clearly developed vortices. The flow
can indeed be safely considered two-dimensional up to a Reynolds number of 160
(Camarri & Giannetti 2007).

Two actuators are placed on the cylinder and are driven in opposite phase, as
shown in figure 1:

v(x, t) = c(t).

The centre of the jets are placed close to the rear separation point at x/L =0.3 and
y/L = − 0.5 and y/L = 0.5, respectively, and their width is 0.16L. Driving them in
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opposite phase allows the use of only one control law, making modelling as simple
as possible while simulating a reasonable experimental set-up. The velocity profile
of the actuators is constant across the jet and the numerical implementation of the
actuators is similar to what is done for inlet and outlet boundary conditions.

Actuation is started when the flow is fully developed. The sensors are placed in
the cylinder wake providing centreline transverse velocity measurements. A feedback
control law is then defined by

c(t) =

Ns∑
j=1

Kj v(xj , t), (2.1)

where v denotes the transverse component of the velocity, Ns the number of sensors
and Kj the gains applied to each measurement.

2.2. Reduced-order modelling by POD and calibration

Empirical modelling is an approach for reducing the size of large scale nonlinear
systems when full-dimensional control is not possible. These methods make use of
numerical or experimental data to retrieve ROM that are less accurate than the
original models but far less expensive to solve. These models suffer from being
largely dependant on the set of solutions that was used to build them. It is therefore
important to include a wide range of dynamics in the database. In our case this
meant considering a sufficiently long time period and an appropriate set of different
control laws. Therefore, we choose a time period, denoted [0, T ], that includes about
six shedding cycles (sampled with 30 snapshots per cycle), and a set of control laws
to be specified later:

C = {c1, . . . , cNc} c� ∈ C1([0, T ]) � = 1 . . . Nc,

The instantaneous velocity at time t i , resulting from applying a control c� is denoted
ui,�. A snapshot database, depending on the control set C, and denoted S(C), is then
defined as

S(C) = {ui,�(x)}i=1...Nt ,�=1...Nc
.

POD is used to obtain a low-dimensional subspace of P = span{S(C)}. Given a
solution subspace P , of size N , POD consists in determining a set of Nr orthogonal
functions {Ψ r}, with Nr � N , such that the error, resulting from projecting an element
of P onto span{Ψ r} is minimal.

In this work, a modified database was formed to lift the boundary conditions:

S0(C) = {wi,�(x) = ui,�(x)− u0(x)− uc(x)c�(t i)}i=1...Nt ,�=1...Nc
,

where u0 and uc are velocity fields chosen to ensure wi,� is equal to zero on all
boundaries. They are chosen as in Galletti et al. (2007). Two simulations are performed
with constant control laws which we denote cν and cμ, with cν = 0 and cμ �= 0. The
fields u0 and uc are then defined by

u0(x) =
1

Nt

Nt∑
i=1

ui,ν(x) and uc(x) =
1

cμ

(
1

Nt

Nt∑
i=1

ui,μ(x)− u0(x)

)
.

Any choice of cμ results in the velocity field uc being equal to 1 on the control
boundary while the rest of the field depends on the value of this constant. So as not
to create important perturbations near the cylinder, cμ was chosen to be relatively
small (cμ = − 0.05). The main concern is to lift the solution with a sufficiently
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regular function to avoid pathological situations such as discontinuities. By taking a
physically reasonable function we avoid the introduction of source terms that may
lead to ill-conditioned problems in the identification process.

Denoting Φr (x) the spatial modes resulting from applying POD to S0(C), a
reduced-order solution denoted uR is defined by

uR(x, t) = u0(x) + c(t)uc(x) +

Nr∑
r=1

ar (t)Φ
r (x), (2.2)

where the ar (t) are scalar functions of time.
Performing a Galerkin projection of the incompressible Navier–Stokes equations

onto the Nr -dimensional subspace spanned by the POD modes, yields a system of
ODEs:

ȧr (t) = f (a(t), c(t), ċ(t)) · X r ,
(2.3)

ar (0) = (u(·, 0)− u0 − c(0)uc, Φ
r ), for 1 � r � Nr,

where X r is a Mr = N2
r + 2Nr + 4 element vector:

X r =
[
Ar, {Brk}k=1,Nr

, {Crks}k,s=1,Nr
, Er, Fr, Gr, {Hrk}k=1,Nr

]t
,

with, for 1 � r, k, s � Nr :

Ar = −((u0 · ∇)u0, Φ
r ) +

1

Re
(�u0, Φ

r ),

Brk = −((u0 · ∇)Φk, Φr )− ((Φk · ∇)u0, Φ
r ) +

1

Re
(�Φk, Φr ),

Crks = −((Φk · ∇)Φs, Φr ),

Er = −(uc, Φ
r ),

Fr = −(uc · ∇u0, Φ
r ),

Gr = −((u0 · ∇)uc, Φ
r )− ((uc · ∇)u0, Φ

r ) +
1

Re
(�uc, Φ

r ),

Hr = −((uc · ∇)Φk, Φr )− ((Φk · ∇)uc, Φ
r ),

and f (a(t), c(t), ċ(t)) is a vector function defined by

f (t) =
[
1, {ak(t)}k=1,Nr

, {ak(t)as(t)}k,s=1,Nr
, ċ(t), c2(t), c(t), {ak(t)c(t)}k=1,Nr

]
.

Model accuracy can be evaluated by integrating (2.3) with one of the control laws
in C, and comparing the solution a(t) with the projection coefficients of the Navier–
Stokes solution u onto the low-order subspace spanned by the POD modes. Denoting
âk(t) = (u(·, t)− u0 − c(t)uc, Φ

k), we define the ROM integration error by:

Nr∑
r=1

∫ T

0

(âr (t)− ar (t))
2 dt.

In some cases, system (2.3), with coefficients X r determined by Galerkin projection,
turns out to be unstable, and in most other cases the integration error defined above
is relatively large. However, efficient calibration techniques can be applied to build a
similarly structured model (Galletti et al. 2004, 2007; Couplet, Basdevant & Sagaut
2005). A computationally inexpensive approach consists in seeking X r such that the
residual, resulting from injecting the temporal projection coefficients â(t) into the
equations (2.3), is minimized. Such a residual can be calculated for each control law
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Figure 2. Vorticity of the flow downstream of the cylinder. Isolines are the same in all
figures.

in C. The calibration problem is then formulated

min
X r

Nr∑
r=1

Nc∑
�=1

∫ T

0

(
˙̂a

�

r (t)− f (â�(t), c�(t), ċ�(t)) · X r

)2

dt (2.4)

In fact, only a subset of X r is identified. For the tensor Crks we keep the values
obtained from the Galerkin projection in order to improve the conditioning of the
linear problem resulting from calibration. This method is investigated in Weller et al.
(2009), where it is shown that if Nc = 1 the model is accurate when integrated with
the control that was used to generate the database but not robust to a variation of
the control law. Moreover, in that paper it is also shown that increasing Nc from 1
to 2 or 3 greatly improves the ROM robustness to a variation of the control law.

3. A ROM-based algorithm for optimization
The aim is to exploit the reduced order model to damp vortex shedding in the

cylinder wake. To this end, we choose to minimize the difference between the actuated
flow velocity and the steady unstable solution ū (see figure 2a), as done in Li & Aubry
(2003), over a fixed period of time [0, T ]. Minimizing this cost functional also enables
drag reduction, yet does not require any knowledge of the pressure field. Furthermore
the centreline transverse velocity of the objective velocity field ū is zero, meaning that
if the flow is actuated by using a feedback based on this quantity, the velocity of the
jets tends to zero as the flow is stabilized.

The functional to minimize is defined by

J (u) =

∫ T

0

F (u(t)) dt, (3.1)

where F denotes the difference in norm at each time:

F (u(t)) = ‖u(·, t)− ū‖22.
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Reduced-order models have been applied previously with some success for solving
optimization problems. In these works, a classic optimization procedure was applied
to minimize the cost functional, using the ROM to calculate the descent directions
at each step. Within the optimization loop, the model was periodically updated using
a trust region principle (Bergmann & Cordier 2008). Each update corresponded to
a new numerical simulation of the Navier–Stokes equations, and therefore a new
database, and an evaluation of the actual value of the functional. We use a similar
approach in this work.

A difficulty in the present application is that the ROM can give a good
approximation of a solution, while the model-based gradient fails to be a descent
direction for the original infinite-dimensional problem. The ROM-based optimization
algorithms can therefore reach sets of control parameters that cause an increase in the
functional. This is due to the fact that ROMs are very sensitive to parameter variation.
The multi-dynamic ROM defined in the previous paragraph leads to models that are
more robust. However, including large sets of data in the POD–ROM procedure can
be costly, and also implies a loss of accuracy. Indeed the residuals of the mean
square problem (defined in (2.4)) increase as we include additional control laws in the
calibration processes, that is as we add constraints to the minimization problem. This
implies that the POD model becomes less accurate for the controlled flows belonging
to the database. The idea of our optimization algorithm is to use Nc-control models,
with Nc as small as possible, and to increase Nc if the current model supplies a wrong
direction.

We first define the projected functional. Using (2.2) and (3.1), J(uR) can be expanded
as a function of a and c, which we denote JR(a, c):

JR(a, c) = ‖u0 − ū‖2 + c2(t)‖uc‖2 + 2c(t)(u0 − ū, uc)

+

Nr∑
k=1

(
2ak(t)(u0 − ū, Φk) + 2ak(t)c(t)(uc, Φ

k) + a2
k (t)

)
.

The initial control law is denoted c0. A full-order simulation is performed over
[0, T ] using this control. POD is then applied to the snapshot database S0({c0}) and
a 1-control model, denoted R0(a, c), is built using the method described previously.
A descent method is then applied to solve the following problem:

min
c

JR(a, c) s. t. R0(a, c). (3.2)

We estimate the model is only reliable for control laws that do not differ too much
from c0. This trust-region is defined at the beginning of the optimization procedure,
and is not modified. The descent is therefore stopped as soon as the relative variation
of the control law, measured using the L2 norm on [0, T ], reaches �= 40 %. This limit
was found by a trial and error procedure as a compromise between computational
cost and accuracy of the gradient. If � is small, the gradient obtained by using the
low-order model is likely to be more accurate with respect to a case where � is
large. However, this implies that the number of optimization steps performed without
updating the low-order model by additional Navier–Stokes simulations is smaller,
which in turn means that the computational costs are higher. Once a suboptimal
control cnew is reached, a new full-order simulation is performed, and the new value
of the cost functional is evaluated. POD is applied to S0({c0, c1}) and and a
2-control model R1(a, c) is built using this data. The procedure is repeated using
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R1(a, c), descent starts from cnew if the functional has indeed decreased, and from c0

otherwise.
Continuing this way we defined an optimization algorithm in which the ROM is

updated at the end of each step, and the current suboptimal control law is updated
only if a better one is found. The optimization algorithm structure is the following:

(i) Initialise : k = 0, C0 = {c0}
Perform full-order simulation using c0. Solution is denoted u0

Set copt = c0 and Jopt = J(u0)
(ii) Apply POD to S0(Ck) to obtain a low-dimensional subspace
(iii) Build calibrated model Rk(a, c)
(iv) Begin descent method to solve:

cnew = arg min
c

JR(a, c) s.t. Rk(a, c)

while

∫ T

0

(copt − cnew )2 dt < �2

∫ T

0

(copt )2 dt (model trust-region)

(v) Evaluate Jnew = J(unew ) (perform full order simulation using cnew .)
(a) If Jnew < Jopt : Choice of cnew is validated.
Ck+1 = {copt , cnew}
copt ← cnew and Jopt ← Jnew

(b) If Jnew > Jopt : choice of cnew rejected.
Ck+1 =Ck ∪ {cnew}
copt and Jopt unchanged

(vi) k ← k + 1, go to (ii).
The above loop is interrupted if the decrease rate of J reaches a certain threshold

or if a multi-dynamic model providing a correct descent direction cannot be found.
Although the convergence of the algorithm towards the solution of the full-order
optimization problem is not guaranteed, the test on the actual value of the functional
at each iteration prevents divergence. Using the ROM at step (iv) makes the algorithm
much more efficient computationally than an algorithm using the full order model: the
gradient calculation involved in finding a descent direction is simple to implement and
calculated in negligible time. In the present set-up the control law c(t) is optimized in
the space of the gainsK= {K1, . . . , KNs

}, in agreement with (2.1). At each optimization
step the control c(t) is changed by updating K.

4. Results and discussion
The proportional feedback control (defined in (2.1)) was used with Ns = 16 sensors.

At the first optimization step, the initial guess for the gain coefficients was K3 = − 1
and Kj = 0 for j �= 3. The sensors were uniformly distributed on the symmetry line
in the near wake between x/L =0.75 and x/L = 2.625. The vorticity field resulting
from the application of the suboptimal gain coefficients obtained after 17 iterations
of the above algorithm is plotted in figure 2. At the 18th iteration, the model did not
provide a descent direction and was therefore updated as described in the previous
section. However, the new model also failed, as did the next. The procedure was
therefore interrupted although the gradient obtained with the ROM was still not
negligible at this step. An explanation for this is that as the functional reaches its
minimum, the decrease that can be achieved at each iteration is lower than the
model error. Figure 3(a) shows the time evolution of F (u(t)) at different stages in
the optimization. We note that at each optimization step there is an instant in the
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Figure 4. (a): Time evolution of the functional F (u(t)) versus time and (b) eigenvalues of
the linearized Navier–Stokes at Re = 150 for the uncontrolled and controlled cases.

[0, T ] time interval at which F (u(t)) is minimal. The more J (u) decreases (as the
optimization proceeds), the more this point nears T . At iteration 17, it is almost at
the end of the time interval. In figure 3(a) it is seen that the evolution of F (u(t)) forms
an envelope as the optimization proceeds. The time interval over which the solution
remains unchanged increases with the iteration number and hence the minimum of
the curve is progressively moved to the right. This suggests that the last control
reached by the algorithm is nearly optimal. Evolution of the cost functional J (u)
is depicted in figure 3(b). Two controls were rejected during the procedure. This is
visible in figure 3(b): J (u) increases twice, at steps 10 and 14. The total decrease
during optimization is of 42 %.

The optimization performed provided a suboptimal control law for the time interval
[0, T ], but the simulation was continued outside this interval up to time 3T using
the same set of sensors and gains. Let us define K0 the set of gains corresponding
to the initial optimization guess and K1 the set corresponding to the gains obtained
from optimizing on [0, T ]. The control laws corresponding toK0 andK1 are plotted
in figure 5(a), where it is seen that the actuation decreases as the flow unsteadiness
is reduced. We note that the control laws are remarkably different even though K0

corresponds to a feedback with only one sensor for which the dominant gain is very
close to that ofK1. Figure 4(a) shows the time evolution of F (u(t)) during the period
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[0, 3T ] obtained withK0 andK1. It can be seen that beyond T the solution obtained
usingK1 develops large scale oscillations that are however asymptotically less intense
than those corresponding to both the uncontrolled system and K0. Accordingly, the
asymptotic mean drag coefficient decreases from 1.409 in the uncontrolled case to
1.316 in the case relative to K1. Comparing K0 and K1 it can be seen that
small differences in the gain values induce large variations in the controlled system
behaviour over the optimization time interval. In figure 5(b) we show the effect of
applying the gain coefficients of K1 redistributed over a smaller number of sensors.
For example, we placed 4 sensors at x/L = 1, x/L = 1.5, x/L = 2 and x/L = 2.5, and
associated to each point a gain obtained by adding up the gains associated to the
surrounding sensors. The effect on F (u(t)) was almost identical to that obtained using
all 16 sensors. However, while this means that 16 sensors were not necessary to obtain
the actuator signal, when the 4 sensors are lumped to 2 (x/L = 1.25, x/L =2.25) or
to 1 (x/L = 1.75), the control effect is radically modified.

In order to improve the stabilization beyond T a new optimization was performed
over the time interval [T/2, 3T/2], starting from the initial conditions corresponding
to the actual state of the controlled flow at time T/2. The initial guess for the gains
was equal to K1 and the algorithm performed 9 loops before exiting. The new set
of gain coefficients obtained after optimization is denoted K2. Evolution of F (u(t))
over [T/2, 3T/2] when the gains K2 are applied starting from time T/2 (feedback
coefficients K1 are applied in the interval [0, T /2]) is shown in figure 4(a). Using
K2 instead of K1 over [T/2, T ], induces only a small decrease in F (u(t)), whereas
a substantial reduction can be observed over [T , 3T/2]. Outside the optimization
interval the asymptotic solution is less unsteady than the solution obtained with gains
K0 andK1, and the asymptotic mean drag coefficient is equal to 1.283. Following the
same principle, a third optimization was performed over [T , 2T ] with similar results:
a minimal reduction of F (u(t)) over [T , 3T/2], but a substantial improvement over
[3T/2, 2T ]. When the gains corresponding to the last optimization performed (denoted
K3) are applied beyond 2T , the flow rapidly develops an additional instability as it
seen in figure 4(a). The feedback gains corresponding to the four controls are reported
in table 1.

Since the functional is defined on a finite time horizon, the control may well tend to
achieve the best performance on that interval regardless of what will happen outside.
The solution outside this interval is not considered in the control and in this sense is
not predictable. The main difficulty here is that the problem is nonlinear and hence
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x/L 0.75 0.875 1 1.125 1.25 1.375 1.5 1.625

K0 0 0 −1 0 0 0 0 0
K1 −0.0098 −0.0088 −1.0076 −0.0037 0.0028 0.0118 0.0241 0.0372
K2 −0.2785 −0.2485 −1.2355 −0.233 −0.2331 −0.2295 −0.2158 −0.1854
K3 −0.2455 −0.2118 −1.1965 −0.1911 −0.1884 −0.1818 −0.1641 −0.1293

x/L 1.75 1.875 2 2.125 2.25 2.375 2.5 2.625
K0 0 0 0 0 0 0 0 0
K1 0.0505 0.059 0.0713 0.0834 0.0916 0.1035 0.1165 0.1314
K2 −0.1385 −0.0931 −0.0052 0.1121 0.209 0.3797 0.5844 0.8197
K3 −0.0772 −0.0279 0.0666 0.1914 0.2934 0.4734 0.6877 0.9327

Table 1. Values of feedback gains for the three optimization procedures. The sensors are
identified by their position x/L.

we do not have tools such as the Riccati equation to ensure asymptotic stability of
the controlled system.

For a further characterization of the three sets of feedback coefficients described
above, the corresponding critical Reynolds number for the onset of the primary
instability of the wake was evaluated by a linear stability analysis. To this purpose,
the two-dimensional incompressible Navier–Stokes equations were discretized in space
by a second-order centred finite-difference scheme on a two-dimensional Cartesian
staggered grid. The body was represented by an immersed-boundary technique. A
Newton method was used to find the steady solution of the equations and a Krylov
subspace method was used to compute some eigenvalues of the equations linearized
about the steady solution. After a first localization of the eigenvalues, a shift-invert
spectral transformation was used for their final localization in the complex plane. The
same numerical ingredients described in Giannetti & Luchini (2007) ware used here,
and they were already validated for the same flow configuration without actuators in
Camarri & Giannetti (2007).

After having carried out a grid convergence study using five progressively refined
grids with the computational domain of figure 1, the final results were obtained on
a non-uniform grid with 810 and 494 points in the x and y directions, respectively,
having 135 uniformly distributed nodes on each cylinder side and about 22 points
on each jet orifice. Using this grid we found that Recr for the three set of feedback
coefficients K1, K2 and K3 is approximately equal to 79, 107 and 115, respectively,
whereas for the uncontrolled case Recr = 59. Following the above results, two full
Navier–Stokes simulations were carried out for each set of feedback coefficients, one
in the stable regime and one in the unstable. All the simulations were started from
a fully developed vortex-shedding regime and the feedback control was impulsively
applied at a given time. For the simulation, the same code used for building the low-
order models was adopted. As a result, the feedback coefficients K1, K2, K3 drove
the flow towards the steady target solution, thus stabilizing the flow completely, at
Reynolds numbers equal to 75, 100 and 110, respectively. Conversely, the unsteadiness
of the vortex shedding was not eliminated at Reynolds numbers equal to 85, 110 and
120, respectively. For a case of complete stabilization (Re =110 and controlK3), the
aerodynamic coefficients are plotted in figure 6.

Finally, a linear stability analysis at Re = 150 was carried out for each of the
three sets of feedback coefficients. In particular, the 13 most unstable eigenvalues
were localized in the complex plane. In this linear analysis the amplification factor
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Figure 6. Effect of K3 at Re = 110. The beginning of each plot shows lift and drag for the
fully developed uncontrolled flow.

is the real part of the eigenvalues, which is thus positive for unstable eigenmodes
(exponential growth). In figure 4(b) we plot the eigenvalues (only one for each
complex–conjugate couple) for the uncontrolled case and for the three sets of feedback
coefficients. In order to identify the eigenvalues that are displaced by the control, the
trajectory of each eigenvalue is plotted (dashed line) considering a continuous linear
transition between the uncontrolled case,K1,K2 andK3 in this order. The fact that
another couple of eigenvalues cross the imaginary axes when passing from control
K2 to control K3 can explain the behaviour of the controlled flow beyond 2T .
Nevertheless, passing from control K1 to K3, Recr is systematically increased. As
a final remark concerning these results, we stress that there is no guarantee that a
full stabilization is possible at Re = 150 with this control set-up. Indeed it has been
proved that complete stabilization of the incompressible Navier–Stokes equations via
wall-actuation is possible when using full-state feedback (Raymond 2006), but as we
use a limited number of sensors, and therefore have a limited knowledge of the state,
this property no longer holds.

5. Conclusions
We considered the problem of applying an optimization method based on a low-

order model to the minimization of the flow unsteadiness in a bluff body wake. We
showed that it is possible to make use of reduced-order modelling to determine a
suboptimal solution to this problem, at least on a limited time interval. Although our
approach does not guarantee a particular behaviour of the flow outside this interval,
it was found that the feedback chosen this way leads to a long term reduction in
drag. A stability analysis indicated that the eigenvalues corresponding to linearly
unstable modes are shifted toward the stable region of the complex plane. However,
a previously stable eigenvalue was perturbed in such a way as to move to the unstable
region (control K3) thus increasing the unsteadiness outside the optimization time
interval. Nonetheless, the critical Reynolds number is systematically increased as
the optimization time interval is shifted. The computed controls are able to stabilize
the flow starting from the saturated instability at Reynolds numbers close to the
linear stability limit for the corresponding control. In particular, it was possible to
obtain a complete stabilization of the wake at a Reynolds number that is almost the
double of the stability limit for the considered configuration.

The control strategy as well as many other parameters of the approach described
were not optimized. For example, the placement of actuators and sensors has not
been carried out based on systematic arguments, the control target could have been
improved using a different cost functional, another overlapping of the optimization
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time intervals could have led to better results, opting for an adaptive trust region
algorithm would probably accelerate the convergence of the optimization method,
to list just a few possibilities. Nevertheless, the results show that the procedures is
sufficiently robust to actually perform an effective optimization within the selected time
horizon. In perspective, the objective is to investigate more complex control strategies,
control objectives other than stabilization, more realistic flow configurations.

The authors are grateful to Alain Dervieux and Bruno Koobus for making the
AERO code available for the Navier–Stokes simulations, Flavio Giannetti and Paolo
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